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Abstract
The density matrix divide-and-conquer technique for the solution of Kohn–Sham density
functional theory has been implemented within the framework of the SIESTA methodology.
Implementation details are provided where the focus is on the scaling of the computation time
and memory use, in both serial and parallel versions. We demonstrate the linear-scaling
capabilities of the technique by providing ground state calculations of moderately large
insulating, semiconducting and (near-) metallic systems. This linear-scaling technique has made
it feasible to calculate the ground state properties of quantum systems consisting of tens of
thousands of atoms with relatively modest computing resources. A comparison with the
existing order-N functional minimization (Kim–Mauri–Galli) method is made between the
insulating and semiconducting systems.

1. Introduction

Electronic structure calculations, based on first principles
quantum mechanics, provide reliable physical and chemical
descriptions of atomistic, molecular and crystal systems.
However, practical calculations are often limited to fairly
small systems (<500 atoms) due to both theoretical difficulties
and limitations in available computational resources. The
theoretical difficulties arise from the high order, O(N2) and
greater, scaling which is inherent within all ab initio quantum
mechanical methods in the absence of approximations, where
N is a measure of the system size and usually most critically
depends on the number of basis functions.

To date, density functional theory (DFT) [1] has proven
to be a reliable and efficient choice in the study of small to
medium quantum systems. Although the approximation of the
exchange–correlation functional in Kohn–Sham theory leads to
deviations from experiment, the reproduction of many physical
properties is sufficient for practical use and often deviations
are systematic, thereby increasing the level of confidence in
interpreting the results. A further feature of DFT is that it
is amenable to expression through a wide variety of basis

functions such as plane-waves [2], Gaussians [3], wavelets [4],
grids [5], B-splines [6], psincs [7], and numerical orbitals [8].
In this present article we will focus on the use of real-space
localized orbital methods, while recognizing that this is just
one of many possible approaches.

Solution of the Kohn–Sham equations consists of two key
steps—the construction of the Hamiltonian and the attainment
of the self-consistent field, including the determination of the
orthogonal Kohn–Sham states. In the worst case scenario,
construction of the DFT Hamiltonian matrix can scale as
O(N4) due to the Coulomb term, though it was recognized that
the use of density fitting [9] in an auxiliary basis can reduce
this to O(N3) at most. Diagonalization of the Hamiltonian
matrix will similarly scale as O(N3). Thus the building and
diagonalization of the Hamiltonian matrix are considered to
be the major bottlenecks of any conventional implementation.
Although DFT is considered relatively efficient it is still
computationally prohibitive for the study of systems consisting
of atom numbers in the thousands and greater. To overcome
this barrier, techniques have been developed and employed
to reduce the scaling of the computational cost to the linear
regime, O(N) (order N). In the same way, memory usage
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must also scale linearly, instead of as O(N2), in order to avoid
another potential bottleneck.

The key to achieving linear scaling is to enforce locality
in all phases of the calculation. If the basis functions
are strictly local in real space then the construction of the
Hamiltonian readily becomes order N . Only the Coulomb
energy requires special consideration, but can be constructed
with linear scaling through approaches such as fast multipole
methods [10], or full multigrid methods [11]. Due to the
locality, the Hamiltonian matrix, and in general the overlap
matrix become sparse and thus the memory naturally scales
linearly too. In the present work, we will focus on the
SIESTA methodology [12] to define the Hamiltonian and
overlap matrices, while noting that there are many similarities
to the approach embodied within the PLATO code [13]. Here
norm-conserving pseudopotentials are used to replace the
core electrons and nuclei with a non-local potential, while
the valence states are expanded in numerical pseudo-atomic
orbitals (PAOs) [14]. These PAOs are the numerical solutions
to the atomic pseudized problem, represented as a tabulation
on a radial grid and multiplied by the appropriate spherical
harmonic. In order to make the basis functions strictly local,
the atomic problem is solved within a confining potential that
becomes infinite, either instantaneously, or asymptotically, at
a given radius [15]. Thus the approximation is contained
within the basis function, rather than the Hamiltonian, as
opposed to methods where the Hamiltonian is made sparse
through thresholding of integrals involving infinitely ranged
basis sets [16]. Further details of the construction of the
Hamiltonian, as well as the extension of the SIESTA approach
to include greater radial variational freedom, can be found
elsewhere.

Of course, enforcing locality in the Hamiltonian is a
necessary, but not sufficient, condition for a method to be
order N . It is also necessary to replace matrix diagonalization
with an approach to obtaining the self-consistent density that
enforces localized solutions without explicit orthogonalization
of all Kohn–Sham states. This exploits the fact that states
are known to decay exponentially in materials with a band
gap, while even metals exhibit power-law decay. One of the
first linear-scaling methods to be proposed in this context for
DFT was the divide-and-conquer (D&C) approach, proposed
by Yang in 1991 [17, 18] and then subsequently reformulated
for use within the density matrix framework in 1995 [19].
This method reduces the O(N3) scaling inherent in the
diagonalization of the Hamiltonian matrix to the linear-scaling
regime by using partition functions to subdivide the electron
density of the complete system. Each subsystem is then solved
separately and the electron charge density of each subsystem
is found. The sum of the corresponding contributions from all
subsystems is used to obtain the total electron density and the
energy of the system. This is possible due to the fact that the
electron density is a local property within DFT.

Following the proposal of the D&C approach, there
was extensive interest in other linear-scaling approaches
within the field. This included methods based on
functional minimization with respect to localized Kohn–Sham
states [20], while avoiding explicit orthogonalization, and

techniques that operate directly on the density matrix with
sparsity imposed [21–23]. In the present implementation
of the SIESTA methodology the Kim–Mauri–Galli (KMG)
functional [24] is generally employed to determine the
electronic states under the imposition of a fixed electronic
chemical potential (i.e. Fermi level). At this point it is
appropriate to consider the merits and demerits of the different
approaches. Firstly, the D&C approach suffers from the
problem of duplication of effort. As will be seen when the
details of the method are presented in the subsequent section,
any given matrix element will appear in the Hamiltonian of
many localized states and similar eigenstates will be generated
in numerous cases since they will contribute to different
subsystems. Hence, the overlap of subsystems leads to
repetition that increases the prefactor of the linear scaling and
consequently the cross-over point at which the linear-scaling
algorithm outperforms matrix diagonalization can be raised.
Turning to consider the KMG approach, the use of functional
minimization eliminates the duplication of effort present in
D&C. However, the KMG method is subject to difficulties of
its own. Because the algorithm works at constant chemical
potential, rather than fixed number of electrons, it is necessary
to a priori specify the Fermi level to lie within the band gap. If
this is not the case, then the method diverges. For wide gap
insulators this is rarely an issue, since there is considerable
margin for error when guessing the chemical potential to
use, whereas for a semiconductor or small gap system it
becomes a matter of trial and error. To complicate things
further, the Fermi level is a function of the density matrix and
therefore will change during the self-consistent field iterations,
leading to the potential need to adjust the chemical potential
at each cycle during the early stages of SCF convergence.
Consequently, the most practical scheme for utilizing the KMG
method is to perform a small number of iterations of SCF
using conventional diagonalization in order to obtain a good
approximation to the density matrix and to locate the band gap,
and then use this information to initialize the order-N method.
This approach is particularly advantageous when performing
first principles molecular dynamics or geometry optimization
of complex structures, where the cost of the initial few cycles
of diagonalization becomes insignificant relative to the number
of subsequent SCF iterations.

Although being one of the earliest so-called order-N
methods, D&C has been relatively neglected until recently [25]
within the condensed matter physics field, though it has
found significant use within the chemistry community due to
the greater focus on localized basis sets and semi-empirical
QM methods [26–28]. A few researchers have extended
the D&C method to large molecular dynamics simulations
using the frozen density approach [29, 30] and to solid state
systems [31, 32]. It could be argued that the situation with
regard to the prefactor of D&C is not as severe as it might be
on current computers for two reasons. Firstly, there exist highly
machine optimized routines for serial diagonalization on most
platforms that have made diagonalization as competitive as it
is for moderately sized problems. Secondly, the simplicity of
the scheme lends itself to two tier parallelism, with distributed
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memory schemes for the division of the subsystems over
processes, while each diagonalization may be parallelized over
a smaller number of nodes using a shared memory paradigm.
This approach will be particularly well suited to modern multi-
core machines. When these factors are combined with the
robust nature of D&C with respect to the size and position of
the band gap there is reason to believe that reappraisal of the
D&C scheme is in order.

Here, we report our implementation of the D&C technique
within the SIESTA code [12]. When coupled with the linear
combination of numeric atomic orbitals within the SIESTA
methodology, our results suggest that D&C can prove to be a
very efficient first principles quantum mechanical calculation
method. By incorporating D&C within SIESTA, we have
taken advantage of the linear scaling associated with numerical
orbitals, in the sparse matrix representation, when constructing
the Hamiltonian matrix. Hence, we have provided a robust
fully linear-scaling solution to DFT calculations.

2. Density matrix divide-and-conquer theory

The D&C scheme is related to the principle that the electronic
structure for a particular region of a quantum system, to a
good approximation, only depends significantly on the external
potential due to nearby subsystems, while those further away
are rapidly screened with increasing distance. This principle
was formalized and coined ‘near-sightedness’ by Kohn [34].
The D&C method, first proposed by Yang [17, 18], was
arguably the first practical linear-scaling scheme for first
principles methods, and while it precedes the work of Kohn
it builds on the prior knowledge of localization through
construction of Wannier functions [35, 36].

The D&C method involves dividing a system into a set of
smaller overlapping subsystems. The speedup in calculation
time occurs because each subsystem is solved separately with
a cost that no longer depends on the size of the global
problem. The individual subsystems are coupled to each other
by a common Fermi energy, allowing electrons to flow until
equilibrium is achieved. The obtained electronic information
for each subsystem is then combined in a specific way so as
to provide an approximation to the global (complete system)
density matrix.

Our implementation treats each subsystem as consisting
of a core region that is surrounded by a buffer region, as per
the original work of Yang [17]. The atom(s) found in the
core region are those whose localized electronic states are to
be determined, while the atoms within the buffer region are
required to correctly describe the electronic states of the core
atoms within the local subsystem. For the purposes of the
present work, we shall focus on the situation where the core
region holds one atom, while the buffer region can include as
many atoms as required. Each atom in the system will become
a core atom of a single subsystem. The size of the buffer region
depends on the decay length within the material of interest and
controls the degree of deviation from the unrestricted Kohn–
Sham solutions. Within the SIESTA methodology, an initial
guideline as to the radius needed is given by the distance at
which the Hamiltonian matrix elements go exactly to zero

(which will always be greater than the equivalent distance for
the overlap matrix as a consequence of the matrix elements
arising from the pseudopotential). However, the buffer size
may need to exceed this distance, since there is no guarantee
that the density matrix will decay at the same rate as the
Hamiltonian. Despite this, it is found that using smaller buffer
radii than the Hamiltonian cut-off can also produce reasonable
qualitative results for certain systems, as will be shown in
section 4.1.1.

Although the present focus is on the situation where there
is a subsystem centred on each individual atom, this need not
be the case. For example, where atoms are closely linked, such
as in a functional group or small covalent molecule, this entity
could be treated with a single subsystem. The benefit of this is
that the computational cost is lowered by a factor related to the
number of core atoms per subsystem. In the limit where serial
diagonalization dominates, the cost will be reduced by the third
power of the number of atoms combined per core (assuming
all have the same number of basis functions per atom). The
disadvantage is that in a system with an evolving geometric
structure then there is a greater risk of discontinuities in the
potential energy surface should a functional group dissociate
and the subsystems are dynamically updated, while if the
membership of the subsystems remains fixed then the quality
of the electronic structure would be a non-uniform function
of the nuclear configuration. Although not reported here, we
have attempted to remedy this problem by smoothing out the
boundaries of the subsystem Hamiltonian matrix, but have only
achieved a small correction in the final total energies. Further
work is required to alleviate this problem. Having a subsystem
centred on each atom represents the conservative option that
minimizes such errors, at an increased computational cost.

2.1. Formulation

The formulation described as follows is based on the density
matrix version of the D&C method [19]. Here, the density
matrix is the primary entity in the formulation; the focus of
D&C is to estimate the global density matrix from the sum
of contributions from all subsystem density matrices. Within
D&C the global density matrix is divided up into individual
subsystem density matrices weighted by a normalized partition
function: ∑

α

Pαi j = 1, (1)

where α is the subsystem index and i and j are orbital indices.
The partition function, Pαi j , is defined by a Mulliken type [37]
weight matrix (suitable for subsystems consisting of one core
atom),

Pαi j =

⎧
⎪⎨

⎪⎩

1 if i ∈ α and j ∈ α
1/2 if i ∈ α and j � α
0 if i � α and j � α.

(2)

Defining the Kohn–Sham one electron density,

ρ(r, r′) = 2
N/2∑

m

ψm(r)ψm(r′) =
∑

i j

ρi jφi(r)φ j (r′), (3)
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Figure 1. Schematic diagram outlining the major implementation sections and process flow for the implementation of D&C within the
SIESTA code.

where electron density is defined in the space of the Kohn–
Sham orbitals, {ψm(r)}. The density matrix, ρi j , is defined
in the atomic orbital space, {φi (r)}, and is given by the linear
coefficients, {Cim}, as follows:

ρi j = 2
N/2∑

m

CimC jm. (4)

We can then divide the density matrix into subsystem
contributions. The density matrix is then a sum of contributions
from all subsystems, weighted by the partition matrix:

ρi j ≡
∑

α

Pαi jρi j =
∑

α

ραi j . (5)

The local nature of the density matrix allows each subsystem
density matrix contribution to be approximated by

ραi j = 2Pαi j

∑

m

fβ(εF − εαm)C
α
imCα

jm (6)

where fβ is the Fermi function approximating an occupation
number, β is the inverse electronic temperature, εF is the Fermi
energy common to all subsystems and εm is the orbital energy.

The Fermi energy needs to be found iteratively so that the
global density matrix yields the correct number of electrons,
N :

N =
∑

i j

ρi j Si j =
∑

i j

(
2
∑

α

Pαi j

∑

m

fβ(εF − εαm)

× Cα
imCα

jm

)
Si j . (7)

3. Implementation

In the present work we have combined the density matrix D&C
scheme with the SIESTA methodology [12] for the linear-
scaling construction of the Hamiltonian and overlap matrices.
Given the use of localized PAOs as basis functions within
the SIESTA methodology, this is a natural combination to
achieve linear scaling for large systems with relatively modest
resources. The following sections contain a description of the
key aspects of the present methodology.

3.1. Algorithm

The general overview of the D&C implementation within the
SIESTA code is shown in a flowchart in figure 1. The flowchart
has been appropriately marked to indicate which parts of
the code involve the original SIESTA routines (straight line),
parallel communication (dashed line) and the present D&C
module (dotted line). The algorithm begins by reading the
spatial locations of all atoms and options to perform the DFT
run. Once the atom specifics have been read into SIESTA
it will distribute the atom information across the compute
nodes according to a domain decomposition algorithm (see
section 3.3). In short, each compute node will be responsible
for a subset of orbitals localized in a region of space and
all the corresponding electronic information pertaining to
these orbitals. Each node then generates the elements of
the Hamiltonian and overlap matrices that it is uniquely
responsible for; if in serial mode the complete matrices are
stored on the single node. The D&C section of the code
then begins from this point. If it is the first SCF cycle,
the system will be divided into subsystems. This entails
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creating a list structure to store the orbital information for
each subsystem with distinguishing lists for the core and buffer
atoms. If running in parallel, the matrix elements belonging
to buffer orbitals that reside on other compute nodes need to
be communicated to the nodes with ownership of subsystems
requiring these data. Because of the spatial locality of the
domain decomposition, the number of compute nodes to be
communicated with should remain constant or decrease as the
system size increases, according to whether the number of
processors employed scales with the system size or remains
fixed, respectively.

The solution for the global density matrix proceeds by
first solving the generalized eigenvalue problem for each
subsystem, calculating the partition weights (equation (2))
and other values that will benefit from caching. Once the
eigenvalues of all subsystems are known, the Fermi energy
is found by iterative variation until equation (7) is satisfied.
Having determined the Fermi energy, the global density
matrix is found by calculating the density matrices for each
subsystem and then combining the contributions multiplied by
the previously calculated partition weights.

3.2. Memory considerations

When using D&C for large systems, the amount of memory
used by the process must be manageable and scale linearly
with system size. For D&C to be practical for very large
systems only the information that is absolutely required should
be stored. A large part of the task is already accomplished
within SIESTA, since all matrices that represent orbital based
information (such as the Hamiltonian, overlap and density
matrices) are stored in a sparse matrix representation [ ] as a
1D array of non-zero valued elements. Because of the strict
spatial locality of basis functions, the sparsity patterns for
the Hamiltonian and overlap matrix are known a priori and
fixed for any given nuclear configuration, while the density
matrix is assumed to adopt the same sparsity pattern as the
Hamiltonian. This use of sparse arrays ensures that the
SIESTA methodology, by default, is linear scaling in memory
usage, except when diagonalization is employed. Here dense
matrix algebra is used locally for compatibility with standard
eigensolution routines. Diagonalization is typically used in
cases where the system size is below the cross-over point at
which linear-scaling solution becomes advantageous, as well
as in cases where the details of the band structure for a material
are to be determined.

The D&C implementation, as has been described in
section 3.1, can consume large amounts of memory for large
systems. This is due to the fact that each subsystem must store
two-dimensional arrays for the subsystem Hamiltonian matrix,
the subsystem overlap matrix, the subsystem eigenvector
solutions and the subsystem density matrix. However, the
subsystem Hamiltonian and overlap matrices are not in use by
the time it comes to construct the density matrix, reducing the
peak memory use. In the algorithm where the computational
effort is minimized, the eigenstates of all subsystems must
be stored simultaneously since they cannot be used in the
construction of the local density matrix until the global Fermi

energy is known. When the number of subsystems is large
and the subsystem sizes are considerable this can lead to a
prohibitive amount of memory usage.

To overcome this issue, an alternative algorithm has been
implemented that counters this problem, if so desired. It
is accomplished by using a single allocation of memory for
each matrix (Hamiltonian, overlap, eigenvector and density
matrix) that is large enough to store the information for the
largest subsystem. That is, instead of storing matrices for
each subsystem only one set of matrices is stored and reused
for each subsystem. This reduces the memory usage from
Np N H

orb N S
orb Neig

orb to N H
maxorb N S

maxorb Neig
maxorb, where the subscript

‘maxorb’ denotes the use of the maximum number of orbitals
found within any of the subsystems. Using this memory-
conserving option leads to the memory usage scaling in a sub-
linear fashion, but does increase the computing time required
for each SCF iteration, since the subsystem Hamiltonian and
overlap matrices will need to be diagonalized twice (the
first time just requiring determination of the eigenvalues) if
no caching of eigenvectors for later use can be performed.
Depending on whether the calculation time is dominated by
the diagonalization step, this can have a significant influence
on the time required for the SCF cycle. On average there is
50% increase in computing time and the worst case scenario
will yield a doubling of the prefactor.

If memory usage is the key bottleneck, then it can be
reduced to the absolute minimum required by computing
all eigenvalues for the subsystems on the fly as required.
Given that the eigenvalues are needed at each iteration of the
Fermi energy solution, this is likely to make this algorithm
uncompetitive as it would increase the prefactor by at least an
order of magnitude, if not more. Memory reduction can also
be achieved by grouping atoms together to form subsystems
(i.e. multiple core atoms per partition), since this reduces the
total number of eigenstates to be stored by eliminating some
duplication.

3.3. Parallelization

The parallel version makes use of the load balancing scheme
included within the SIESTA package for the KMG order-
N method, namely a domain decomposition algorithm to
distribute the atoms amongst the compute nodes. The domain
decomposition algorithm divides the unit cell into right-angled
sections of side lengths as close as possible to being equal
while remaining commensurate with the lattice vectors. It then
allocates each non-empty section (i.e. each section with a non-
zero atom count) to a node. The allocation is conducted in such
a way as to try to achieve a balanced number of atoms per node.
This process could be further refined by accounting for the
neighbour density in order to achieve improved load balancing.
The contributions to the Hamiltonian, overlap and density
matrices from each atom are then stored on the corresponding
compute nodes. When using conventional diagonalization
routines within SIESTA a block-cyclic orbital decomposition
(either 1D or 2D) scheme is used to enable compatibility with
the ScaLAPACK [39] parallel eigensolvers.

Because of the use of spatial locality during the parallel
construction and solution for each subsystem, the only global
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Table 1. Energy differences per formula unit (eV) between diagonalization and D&C as a function of buffer region size and basis set for the
CnH2n+2 alkane chain.

Basis set

Number of
atoms

Buffer region
(Å) SZa SZPb DZc DZPd

192 5.0 4.285 × 10−3 2.705 × 10−3 −1.661 × 10−2 4.170 × 10−3

7.5 6.0765 × 10−4 3.164 × 10−4 −9.237 × 10−4 8.031 × 10−5

10.0 −7.074 × 10−7 6.057 × 10−6 −4.656 × 10−5 4.705 × 10−5

384 5.0 4.288 × 10−3 2.705 × 10−3 −1.661 × 10−2 4.167 × 10−3

7.5 6.076 × 10−4 3.164 × 10−4 −9.237 × 10−4 8.030 × 10−5

10.0 −7.075 × 10−7 6.063 × 10−6 −4.656 × 10−5 4.705 × 10−5

768 5.0 4.286 × 10−3 2.705 × 10−3 −1.661 × 10−2 5.258 × 10−3

7.5 6.074 × 10−4 3.164 × 10−4 −9.151 × 10−4 1.026 × 10−4

10.0 −7.075 × 10−7 6.061 × 10−6 −4.656 × 10−5 4.705 × 10−5

a Single zeta.
b Single zeta + polarization.
c Double zeta.
d Double zeta + polarization.

communication occurs during the determination of the Fermi
energy. Here the eigenvalues and weights are stored on
the node responsible for this particular subsystem. For
every trial value of the chemical potential, the occupancy of
each subsystem must be determined and a global summation
performed to determine the total number of electrons before
iteratively refining the Fermi level. Once the Fermi energy is
converged then the overall density matrix can be constructed
by purely local communication.

4. Results

Calculations have been performed on a range of different
systems in order to examine the performance of the present
combination of D&C with the SIESTA methodology. The
examples chosen include insulating, semiconducting and near-
metallic systems in order to demonstrate the varied application
of D&C. The specific test cases are a linear alkane chain,
CnH2n+2, for the insulating system, previously studied by
Warschkow et al [40], bulk silicon for the semiconducting
system, and a single walled (5, 5) armchair carbon nanotube
for the near-metallic system. The linear scaling and the rate
of convergence of the total energy to the Kohn–Sham energy
when increasing the partition radius are studied. By increasing
the partition radius, this implies increasing the number of
buffer atoms in the buffer region. This is reported as an
increase in the buffer region radius surrounding the core atom
(subsystem centre). As with all tests in this study, each
subsystem contains a single core atom surrounded by a buffer
region. With this type of partitioning the number of subsystems
equals the number of atoms within the system.

The scaling of the calculation time is shown by plots
of the time required to complete the first SCF cycle and
the section of the first SCF cycle only relevant to the D&C
module. The first SCF cycle incorporates the building of the
Hamiltonian and overlap matrices (handled by the SIESTA
code) and the diagonalization and building of the global density
matrix (handled by the D&C module). For comparison, the

performance of the Kim–Mauri–Galli order-N solver already
implemented within SIESTA is examined for the polymer and
bulk silicon. Due to the inherent difficulties of achieving
convergence, when working at fixed chemical potential, for the
near-metallic nanotube the KMG algorithm was not examined
for this case.

The calculations for the semiconducting bulk silicon
system were performed using the memory conservation
scheme, as described in section 3.2. The remaining calculations
were performed using the algorithm in which the eigenvectors
for each subsystem are stored during the computation of the
Fermi level.

Calculations were performed on a 32 processor SGI Altix
machine (1.5 GHz) with 64 GB of RAM. All calculations were
run on a single processor, except those in section 4.4, where
the parallel performance of the code for a bulk silicon system
consisting of 21 952 atoms is examined.

4.1. Insulating system

4.1.1. Linear alkane chain. The example of an insulating
system studied here is the 1D periodic linear alkane chain,
CnH2n+2, where the number of formula units per unit cell,
n, has been varied. This system should provide a favourable
case for all linear-scaling methods as a closed-shell, wide
gap, material with low dimensionality. The calculations
were carried out using a 150 Ryd cut-off for the real-space
integration grid used to represent the density, an energy shift of
0.02 Ryd for the PAO orbital confinement and a density matrix
convergence criteria of 1 × 10−4 for self-consistency. The
Perdew–Burke–Ernzerhof (PBE) [38] form of the generalized
gradient approximation (GGA) was used for the exchange–
correlation (XC) functional. The dependence of the D&C
method on the basis set and the buffer region size is examined
for various length alkane chains in table 1. The table shows the
energy difference per atom between the D&C calculated total
energy and the conventional SIESTA calculated total energy,
(Edc − Esiesta)/n, computed by diagonalization.
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Figure 2. Comparisons of the errors per atom in the total energy between the D&C method and the KMG method for the CnH2n+2 alkane
chain with varying lengths. The D&C method exhibits a constant error as a function of the system size, while for the KMG method, the error
becomes constant as the system size is increased. (a) Using a 5.0 Å radius for the buffer region (D&C) and the Wannier function radius
(KMG). (b) Using a 7.5 Å radius for the buffer region (D&C) and the Wannier function radius (KMG). (c) Using a 5.0 Å radius for the buffer
region (D&C) and the Wannier function radius (KMG).

The errors found for all basis sets and buffer region sizes
are relatively small. Given that the numbers quoted are the
absolute differences in energy, any relative energies would
exhibit even smaller discrepancies. Furthermore, even for the
smallest buffer region size any error is likely to be small at
the level of the accuracy of DFT. As the quality of the basis
set is improved from SZ to DZ, the discrepancy in the energy
increases, while inclusion of polarization functions actually
leads to a reduction in error, at least for smaller buffer regions.
While such variations will be sensitive to the details of the
construction of the basis functions, such as the split-norm for
radial degrees of freedom, the important conclusion is that
there is unlikely to be a strong influence on the convergence
behaviour of the D&C method.

As is to be expected, the errors decrease in size as the
buffer region radius is increased. Table 1 shows that even
a small buffer region radius of 5.0 Å is adequate for this
system, regardless of basis set size, even though the buffer
region is smaller than the maximum orbital interaction range
of 7.3030 Å (for single zeta, SZ) to 7.4416 Å (for DZP). The
errors in the calculated forces are shown in table 2. The errors
in the forces are larger than the total energy errors; however,
this is to be expected. As with the total energy errors, the

errors in the force decrease as the buffer region is increased.
The sizes of the errors for the 10.0 Å buffer region indicate
that molecular dynamic simulations are a possibility with the
D&C scheme, as long as the buffer region is of an adequate
size.

For comparison to the present D&C results, we have
also performed calculations on this model system using the
Kim–Mauri–Galli order-N functional. The same localization
radius has been applied to the Wannier functions within
the KMG approach as for the partition radius in the D&C
technique. Consequently, both methods are attempting to find
localized solutions with the same confinement constraint. The
methods differ though in that the KMG approach contains a
further approximation in that inverse of the overlap matrix
is represented by a series expansion, usually truncated at
first order. The errors in the total energy relative to full
diagonalization are shown as their logarithms in figure 2 for
both KMG and D&C. For D&C the order of magnitude of the
error is relatively constant as a function of increasing system
size, while that for KMG decreases. This behaviour is likely
to be, at least in part, a consequence of the increased sparsity
of the overlap matrix leading to the additional approximation
within the KMG scheme improving. Interestingly, for the
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Figure 3. CPU time scaling as a function of the number of atoms per supercell for a linear alkane chain, CnH2n+2. (a) The D&C contribution
to the first SCF iteration. (b) A comparison between the KMG method and the D&C method. The KMG method’s first SCF and average SCF
iteration calculation times are shown.

Table 2. Force differences per formula unit per Angstrom (eV Å
−1

) between diagonalization and D&C as a function of buffer region size and
basis set for the CnH2n+2 alkane chain.

Basis set

Number of
atoms

Buffer region
(Å) SZa SZPb DZc DZPd

192 5.0 4.62 × 10−2 −7.97 × 10−3 −8.15 × 10−2 −1.03 × 10−1

7.5 −1.24 × 10−3 −1.77 × 10−3 2.20 × 10−3 −4.74 × 10−3

10.0 3.50 × 10−5 5.00 × 10−5 6.10 × 10−5 −9.91 × 10−4

384 5.0 4.67 × 10−2 −8.00 × 10−3 −8.15 × 10−2 −1.03 × 10−1

7.5 −1.24 × 10−3 −1.77 × 10−3 2.20 × 10−3 −4.74 × 10−3

10.0 3.50 × 10−5 5.00 × 10−5 6.10 × 10−5 −9.91 × 10−4

768 5.0 4.65 × 10−2 −7.92 × 10−3 −8.15 × 10−2 −1.02 × 10−1

7.5 −2.62 × 10−3 −1.59 × 10−3 2.02 × 10−3 −4.73 × 10−3

10.0 3.50 × 10−5 5.00 × 10−5 6.10 × 10−5 −9.91 × 10−4

a Single zeta.
b Single zeta + polarization.
c Double zeta.
d Double zeta + polarization.

smaller radii of confinement for the eigenstates the KMG
yields a lower error in the total energy than the D&C scheme,
which is somewhat unexpected, though the situation reverses
for a radius of 10.0 Å.

The scaling of the calculation time of SZ basis set
calculations for increasing supercell dimensions of the
CnH2n+2 alkane chain is shown in figure 3(a). The graph shows
the timing contribution of the D&C module section to the first
SCF cycle. The graph clearly exhibits linear scaling of the
calculation time as the system size is increased for all buffer
region sizes (i.e., the diagonalization of the Hamiltonian matrix
and the assembly of the global density matrix are all linear-
scaling processes). Although not shown here, the scaling is
found to be linear regardless of basis set sizes, as expected.

It is also possible to analyse the prefactor associated with the
buffer region radius for this simple case. For radii of 5.0,
7.5 and 10.0 Å, the number of orbitals within the partition
centred on a carbon atom is 42, 66 and 90, respectively,
for a single-zeta basis set. When the slopes of the lines in
figure 3 are compared against these numbers, it appears that
the prefactor scales approximately as the second power of the
number of orbitals in the partition, as opposed to the theoretical
maximum of a cubic scaling. Figure 3(a) shows a comparison
of calculation time with the KMG order-N method. A direct
comparison is not appropriate in this case, as the KMG method
generally has differing times for each SCF iteration. The first
few SCF iterations take the longest time and as the calculation
progresses through the SCF steps each iteration takes less time.

8
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Table 3. Energy differences (eV/atom) between D&C and diagonalization for a bulk silicon supercell consisting of 512 atoms as a function
of buffer radius and basis set size.

Basis set

Number of
atoms

Buffer region
(Å) SZa SZPb DZc DZPd

512 6.0 −4.879 × 10−2 9.306 × 10−3 5.570 × 10−2 −7.512 × 10−2

7.0 1.751 × 10−2 −9.124 × 10−3 9.001 × 10−2 −2.960 × 10−2

8.0 1.320 × 10−2 −4.685 × 10−3 3.115 × 10−2 −1.346 × 10−1

a Single zeta.
b Single zeta + polarization.
c Double zeta.
d Double zeta + polarization.

The figure displays the timings for the contribution to the KMG
order-N method for the first SCF iteration and the average time
for all SCF iterations compared with the calculation time for
the D&C section of the first SCF cycle. The calculation times
for the CnH2n+2 alkane chain does not differ too much between
the order-N methods.

4.2. Semiconducting system

Bulk silicon has been chosen as the test case for the
semiconducting system, having been previously widely studied
using linear-scaling methods. The calculation was performed
using a 40 Ryd cut-off for the real-space integration grid used
to represent the density, an energy shift of 0.01 Ryd for the PAO
orbital confinement and a density matrix convergence criterion
of 1 × 10−3. The interaction ranges within the Hamiltonian
matrix vary from 9.3843 Å for the SZ basis set to 9.3843 Å for
the DZP basis set. Again the PBE functional was used for the
XC energy and potential. As in the insulating case, we have
calculated the energy difference per atom between the D&C
total energy and that obtained via full system diagonalization
(see table 3) as a function of basis set and buffer region size for
a supercell consisting of 512 atoms.

As before, no dependence was found on the basis set
used, and by increasing the subsystem size (i.e. the buffer
region) the error in the total energy is reduced, with one
exception discussed below. Commensurate with the smaller
band gap and higher dimensionality of this system, the errors
in the total energy are larger than in the insulating polymer
case. Consequently, larger buffer regions are required to
capture the decay length of the Wannier functions accurately.
However, the use of partitions shorter than the interaction range
of the Hamiltonian is still acceptable for at least qualitative
results. Because the sparsity pattern of the density matrix
in SIESTA is determined by that of the Hamiltonian, the
computational penalty for using a large buffer radius only
becomes particularly pronounced once this length scale is
exceeded.

There is one discrepancy in the results: for the 8.0 Å buffer
region size and DZP basis set the error in the total energy,
−1.346 20×10−1 eV, is larger than errors found for decreasing
buffer region sizes. In changing the radius from 7 to 8 Å two
extra shells of silicon atoms are included within the buffer
region, comprising 28 atoms, as opposed to a single shell for

Figure 4. The CPU time scaling of a series of varying sized bulk
silicon. The contribution of the D&C section of the code to the first
SCF iteration is shown.

the first transition. This demonstrates that the convergence with
respect to buffer region is not guaranteed to be smooth, and
fluctuations are likely to be particularly pronounced when all
atoms are symmetry equivalent due to the extent of mixing in
the bands in the system.

The scaling performance of this system (with increasing
atom numbers) is shown in figure 4. The graph shows the
calculation time for the D&C section of the first SCF cycle.
The calculations examine the scaling from 512 to 8000 atoms
using the SZ basis set. For the 6.0 Å buffer region size, linear
scaling is evident with increasing system size. The 7.0 Å buffer
region size calculations show linear scaling beyond 4096 atoms
but deviate below this. This behaviour is even more evident
with the 8.0 Å buffer region size calculations, where there is
approximately O(N3) scaling for the system sizes examined
up to 4096 atoms and near-linear scaling for larger supercells.
This discrepancy between 6400 and 8000 atoms cannot be
currently resolved. We are assuming that it due to hardware
issues and not the D&C method itself, as there is no indication
from the other results that linear scaling should not occur. The
absence of linear scaling for small system sizes is due to the
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Table 4. Energy difference (eV/atom) between D&C and diagonalization as a function of buffer region radius and basis set quality for a
single walled (5, 5) carbon nanotube.

Basis set

Number of
atoms

Buffer region
(Å) SZa SZPb DZc DZPd

1000 5.1121 1.194 × 10−2 1.100 × 10−3 −3.409 × 10−2 −7.250 × 10−2

5.8424 −8.730 × 10−3 −3.894 × 10−3 −2.499 × 10−2 −3.111 × 10−2

7.3030 2.272 × 10−3 −1.335 × 10−3 −1.315 × 10−2 −1.225 × 10−2

a Single zeta.
b Single zeta + polarization.
c Double zeta.
d Double zeta + polarization.

larger buffer region radii being greater than half the supercell
length, based on a lattice constant of 5.43 Å for a single unit
cell of silicon. Within this regime, each partition includes
nearly all the atoms of the supercell and so the cubic scaling
of the diagonalization for the partitions dominates. Once the
unit cell length becomes greater than the buffer region diameter
there is a progressive transition to the expected linear scaling
until the cross-over point is reached at which D&C becomes
more efficient.

A comparison in calculation times between the D&C
method and the KMG method is not reported here as the
actual time to calculate the first SCF iteration within the KMG
method is very large. Computing resources were not available
for this comparison. We can report that for the KMG method
a time of 4.73 h was required for the first SCF iteration to
complete for a silicon system consisting of 512 atoms and
using a SZ basis set with a Wannier radius of 6.0 Å. This time is
well above the time required for a complete calculation (i.e. till
convergence) for the same system using the D&C method.
Although the time for each SCF iteration will reduce in the
KMG method, the benefits of using the D&C method for this
semiconducting system are noticeable.

4.3. Near-metallic system

This last test case was chosen to demonstrate the applicability
of the D&C method for (near-) metals. We have chosen a
(5, 5) armchair single walled carbon nanotube (SWNT) for
this purpose. The calculations were performed using the PBE
functional with a 100 Ryd cut-off for the density integration
mesh, 0.02 Ryd for the PAO energy shift and a density matrix
convergence criterion of 1 × 10−4. The resulting interaction
ranges within the Hamiltonian vary from 7.3030 Å for the SZ
basis set to 7.4416 Å for the DZP basis set.

As in the previous two cases we have calculated the
variation of the error in the total energy with respect to different
basis sets and buffer region sizes. The test system consisted of
1000 atoms within the one-dimensional supercell. The results
are summarized in table 4. The trends in the total energy with
partition radius are less well defined for the present system,
as would be expected to the longer decay length. For the DZ
and DZP basis sets the error does consistently decrease with
increasing radius, though slowly, while for the SZ basis set
the absolute magnitude decreases, but with the sign oscillating.

Figure 5. The CPU time scaling of a series of varying length (5, 5)
single walled carbon nanotubes. The contribution of the D&C section
implemented within the code to the first SCF iteration is shown.

For the SZP there is no apparent convergence within the range
of radii examined and a more extensive exploration of larger
radii is required. Despite the lack of a clear and rapid decay
in error with radius, the magnitude of the difference from the
full diagonalization results, per atom, is comparable to that of
thermal energy at ambient conditions and so higher levels of
convergence may not be required for all calculations.

Figure 5 shows the scaling of the calculation times of the
D&C section which contributes to the first SCF cycle with
increasing system size. The SZ basis set was used for all the
timing calculations. For all buffer region sizes the scaling is
indeed found to be linear.

To reduce the error in the total energy larger buffer
region sizes are required. The timing results show that by
increasing the buffer region slightly, as shown by the transition
from a region radius of 5.8 to 7.3 Å, this will increase the
calculation time considerably. This requirement of a larger
buffer region will inhibit the use of the D&C method for small
metallic systems. The so-called cross-over point, where it
is computationally beneficial to use the D&C method rather
than conventional techniques, is pushed out to larger problems,
which makes the use of the D&C method really only applicable
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Figure 6. Parallel performance of the D&C implementation when
studying a bulk silicon supercell containing 21 952 atoms. Shown
here is the speedup acquired when increasing the number of
processors relative to a single processor calculation.

to fairly large near-metallic systems. Using different partition
schemes that produce smaller numbers of subsystems can
remedy this problem and further work is in progress in this
area.

4.4. Parallelization

The parallel performance of the D&C implementation was
tested on the bulk silicon system for a supercell containing
21 902 atoms. Using a single-zeta basis set, 40 Ryd mesh cut-
off for the integration grid, a PAO energy shift of 0.02 Ryd and
a buffer region radius of 6.08 Å, the test examined the parallel
performance from one processor to 32 processors.

All calculations were executed using the memory
conservation option (see section 3.2). Figure 6 shows that
the speedup gained from using larger numbers of processors
is nearly perfect relative to the calculation time for a single
processor. For 32 processors, the speedup of 31.78-fold
is very close to the ideal value of 32. This indicates
that the computational effort is indeed dominated by the
diagonalization of the subsystems, which is embarrassingly
parallel, while the computational of the Fermi energy and build
of the Hamiltonian matrices, where communication is required,
represents a small overhead. Similar results were obtained by
Pan et al [33] with their parallel implementation of the D&C
method.

It should be noted that for this specific case the load
balancing is perfect, i.e. in all cases each compute node has
an equal number of subsystems of equal size due to the
high symmetry of the problem. This is an important factor
contributing to the near-perfect speedup. However, perfect load
balancing will not always occur in practice with the present
scheme for systems with inhomogeneous density or atom type
distributions. Further refinement of the implementation is
under way to ensure improved load balance for all systems.

5. Concluding remarks

We have successfully combined the density matrix D&C
scheme with the SIESTA methodology for computing the
Hamiltonian and overlap matrices. Our implementation
exhibits linear scaling within the D&C scheme, provided the
dimensions of the physical system exceed those of the allowed
range for the localized states. The applicability to a variety
of systems with varying band gaps has been demonstrated,
including a near-metallic carbon nanotube. This scheme will
allow practical electronic structure calculations of very large
systems, consisting of thousands to tens of thousands of atoms,
with relatively modest computational resources. While the
results of the D&C scheme are comparable to those currently
obtained with the Kim–Mauri–Galli algorithm in SIESTA, the
robustness of the approach leads to it being advantageous
for systems with small band gaps, and therefore a valuable
alternative approach to achieving linear scaling within the
SIESTA methodology. When executed in parallel for large
systems the D&C approach exhibits near perfect speedup,
providing there is appropriate load balancing.
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